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AFIT/GAQ/ENS/OOD-01 

Abstract 

Forty years ago, the Office of the Secretary of Defense proposed using the 

Leontief input-output model to assess tradeoffs in the Department of Defense's (DoD) 

budget. We demonstrate that the Leontief input-output model can assess tradeoffs in the 

Air Force's budget. 

To increase one part of the Air Force's budget, we need to know the 

interrelationships between that budget area and the other areas. In this research, we look 

at different methods of how the functional areas might interact. We demonstrate our 

methodology on two data sets - DoD and the Air Force aggregate budget data. By 

looking at how the functional areas interact, we hope to be able to find a sound 

methodology that will provide assistance to Air Force leadership for determining 

appropriate levels of funding. 



Estimating Budget Relationships 

With A 

Leontief Input-Output Model 

1.      Introduction 

Dr. Wassily Leontief (1906-1999) developed his macro-economic input-output 

model to show the interaction between economic sectors in the 1940s. He correctly 

predicted that the end of World War II would result in a significant increase in demand, 

rather than excess labor that other economists predicted. His model has been applied to a 

wide range of "economies," ranging from international, national, and regional; to 

individual businesses, schools, and hospitals. Dr. Leontief won the Nobel Prize for 

Economics in 1973 for his work. 

In the late 1960's, the Office of the Secretary of Defense's (OSD) Systems 

Analysis office (now called Program Analysis and Evaluation) realized that the 

Department of Defense's (DoD) annual budget could be modeled using a Leontief input- 

output model. They proposed that this model be used to provide tentative fiscal guidance 

(TFG), which is an initial proposal of how future defense budgets might look (Patton et 

al, 365). 

Today, using a Leontief input-output model, similar to Patton et al's Electric Five- 

Year Defense Program, may help provide the capability to test fiscal reasonableness of 

alternative force structures rapidly. More importantly, it enables tradeoff comparisons in 

different types of expenditures (Patton et al, 367). 



We apply this estimation approach to functional areas within the Air Force's 

budget. We estimate the relationships between the functional areas [i.e. intelligence, 

operations and maintenance (O&M), military construction, etc.] of this specialized 

economy. The model indicates the amount of funding in the various support and combat 

areas to maximize effective combat spending (Patton et al, 365). 

When expenditures on one type of weapon system are increased, all of the 

supporting equipment and personnel must be increased. Indirect related costs, such as 

transportation, intelligence, and communications, also must increase, but these are not 

often currently estimated. We conceptualize these relationships with the Leontief input- 

output model to assess total system impacts in terms of costs. We answer the research 

question: Can the Leontief input-output model provide aggregate relationships of Air 

Force budget relationships? In modeling the DoD budget using a Leontief input-output 

model, we estimate parameters using historical budget data covering the last thirty years 

compiled from the Automated Budget Interactive Data Environment System (ABIDES). 

This research builds a model of the Air Force as an economy that conceptualizes the 

relationships between the various functional areas at an aggregate level. This approach 

may also be used to indicate areas in which there are unusually high rates of spending, or 

areas in which funding does not appear to be sufficient to support related budget areas. 

This research provides Air Force leadership with an approach to show tradeoffs 

between the current Air Force expenditures and new system spending rates. For 

example, if the Air Force increases procurement expenditures, it also needs to increase 

the accompanying maintenance, intelligence, transportation, and communications 

support. This model does not substitute for detailed program office estimates. 



In the next chapter, we will discuss the background of the Leontief input-output 

tables, and the basic structure of the static and dynamic models. Chapter Three details 

our methodology to estimate the coefficients for the Leontief input-output tables using a 

minimization scheme. Chapter Four presents the methodology and the results that we 

obtained using a regression for estimation. Chapter Five concludes this research and 

suggests other potential applications. 



2.      Leontief Input-Output Model 

The French economist Frangois Quesnay conceptualized the idea of a detailed 

accounting system of inter-industry activities. In 1758, he published 'Tableau 

Economique" which was a diagrammatic representation that showed how expenditures 

could be systematically traced through an economy (Miller and Blair, 1). Wassily 

Leontief won the 1973 Nobel Prize in Economics for extending this representation to 

develop the "Leontief input-output model," which estimates the interactions between 

different industries in an economy. His purpose in creating this theory was to "provide a 

simplified picture of real systems" (Survey of Current Business, 10). 

The Leontief input-output model can be adapted to systems of varying 

complexity. One form is a linear programming problem (this is the static open model that 

is discussed below). The input-output model is often used to determine the impact of 

flow interactions for single corporations, regions, nations, and even the world's economy. 

Because of its flexibility, mathematicians and economists use the model to study diverse 

problems ranging from combat modeling (Snodgrass 2000) to environmental pollution. 

In this chapter we shall discuss the basic static open Leontief input-output model, 

the assumptions for that model, the consumption possibility curve, the open and closed 

models, the dynamic model, and the fixed coefficients of production. 

2.1      Leontief Input-Output Model 

Any country's economy is an "interwoven fabric." Simplified examples include 

the interrelationships within a single industry, say the printing and publishing industry, 

which depends on the paper and allied products industry, which in turn depends on the 



lumber and trucking industries (Leontief, 6). The example that Leontief uses to explain 

his model is the United States economy. He divides our economy into forty-two major 

sectors grouped into four areas: production, distribution, transportation, and consumption. 

When set into matrix format, the rows reflect the output of each sector to the other 

sectors. Columns show how each sector obtains the inputs (goods and services) that it 

needs from the other sectors. In other words, the columns represent how a particular 

sector uses the inputs of the other sectors (including inputs that it needs from its own 

industry) (Wu and Coppins, 208). This matrix reflects the flow of trade between the 

different sectors of the economy. 

Wu and Coppins illustrate with an economy with only three industries (A, B, and 

C), shown in Table 1 (Wu and Coppins 1981). The columns reflect the inputs to the 

economy, and the rows show the outputs. For example, in the second column of the first 

row, industry B requires an input of fifteen units from A, four units from itself, and eight 

units from C. An agricultural example of consumption within the producing industry is 

seed corn used to plant the next year's crop. 

Table 1: Three-Industry Example 

Inputs 

Outputs 

A 

B 

C 

B Final Demand        Total 

10 15 25 15 65 

5 4 18 23 50 

22 8 77 18 125 



The units in any row may be any aggregate measure of that industry's output. Measures 

may include tons, truckloads, or value. In this research, we always measure all the 

outputs in dollars. 

The nine main entries in Table 1 show the flow between the three industries. 

Industry A's output of $65 used $10 by A, $15 by B, $25 by C, and the final demand is 

$15. Final demand includes such economic categories as exports, government purchases, 

inventory accumulation, and payments to households. Since these are exported to 

members of the final demand sector, they are outside the production economy (Wu and 

Coppins, 208). 

The next step in the analysis of Table 1 is to develop a table of technology 

coefficients. These coefficients give the amount of input required from each industry to 

generate one unit of output from that industry for a given production technology. Each 

element in Table 1 may be represented with 

Xij = output (in dollars) of industry i used by industry j. (i,j = A, B, C), 

Xi = total output from each industry, i = A, B, C, and 

y,- = final demand for each industry's output, i = A, B, C . 

Therefore, the output of industry A used by industry B is represented by XAB = $15. 

Let atj equal the number of dollars' worth of industry i"s output required by 

industry j to produce one dollar's worth of output from industry j. The inputs XAJ + XBJ + 

xq are required to produce the output of industry/ Dividing Xy by X,- normalizes the 

value to the input from industry i for each dollar of industry; output. This yields the 

technology coefficients, 



a, = — (2-1) 

For example, 

aB/i = $10/$65 = 0.154, 

which is the dollar amount of industry B's output required to produce one dollar's worth 

of industry A's output. Therefore, the total dollar value of inputs from all three industries 

required to produce one dollar's worth of industry A's output is 0.154 + 0.077 + 0.338 = 

0.569. Table 2 shows the matrix of technology coefficients (ay) which are based on 

equation 2-1 (Wu and Coppins, 209). 

Table 2: Technology Coefficients 

Purchasing Industry 

Producing Industry       ABC 

A 

B 

C 

0.154 0.300 0.200 

0.077 0.080 0.144 

0.338 0.160 0.616 

If there are no significant changes in the production technology, the coefficients 

remain constant over time. 

For the economy in the three-industry example, the general system of equations is 

XA > yA + CIAAXA + aABXB + aACXc (2- 2) 

Xß > ys + CIBAXA + ClBB^B + <*BC&C 

Xc^.yc + <*CAXA + acßX-B + cicc^c • 



These three equations show that the output from industry A may go to final demand (yA) 

or become inputs for the three industries. These equations can then be written in matrix 

notation as 

X=y+AX 

or equivalently, 

y = (I-A)X 

where I is the identity matrix, and for a three-sector application, 

(2-3) 

y = yB 

yc. 

and 
A = [ay], 

X = 

The matrix (I - A) is known as the Leontief matrix (Wu and Coppins, 210). The 

Hawkins-Simon condition requires that 

If an economic system in which each sector functions by absorbing output 
of other sectors directly and indirectly is to be able not only to sustain 
itself but also to make positive delivery to final demand, each one of the 
smaller and smaller subsystems contained in it must necessarily be capable 
of doing so too. (Leontief, 26) 

Dorfman, Samuelson, and Solow give the following explanation of the Hawkins-Simon 

condition, which ensures viable production: 

If we add up the direct and indirect inputs of coal that go into a ton of 
output (the coal to make coal, the coal to make coal to make coal, the coal 
to make steel to make coal, the coal to make steel to make coal to make 
coal, the coal to make steel to make steel to make coal, etc., ad infinitum), 
that all this will be less than one ton. Clearly if a ton of coal "contains," 



directly and indirectly, more than a ton of coal, self-contained production 
is not viable. (Dorfman et al, 215) 

Mathematically, the Hawkins-Simon condition requires the determinant of the matrix and 

all submatrices (I - A) to be positive, and hence the Leontief matrix is non-singular. A 

non-singular matrix, by definition, is both square and invertible. Thus, we may rewrite 

equation 2-3 as 

X = (I-A)-1y. (2-4) 

Now, determining the necessary production to support final demand mathematically 

reduces to finding X > 0 such that (I -A)X = y. For the three-industry economy, we have 

d-A)-^ 
1.727 0.77 1.186 

0.409 1.345 0.715 

1.696   1.241   3.953 

The 1.727 in the first position of (I -A)"1 means that for every dollar's worth of 

industry A's products delivered to the final demand sector, the total intra-industry 

transactions add up to require an additional 72.7 cents (Wu and Coppins, 211). 

Primary factors are basic resources available to the "economy" or system being 

modeled. The three-industry model, currently, does not include primary factors. 

Economists often assume that labor is the only primary factor in the economy. Wu and 

Coppins state that other than primary factors, "all other productive factors are produced 

by the economy" (Wu and Coppins, 211). If we let "industry" supply the primary factor, 

the amount of labor needed by industry / to produce one unit of output can be represented 

by the variable aoj. Given total output X, the total labor required is 

X0=aoX, (2-5) 
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where 

ao = [aoA, aoB, aoC]. (2- 6) 

Incorporating the labor requirement into the Leontief input-output model results in the 

following change to the previous equation, and transforms it into equation (2- 7). 

X0 = a„(I-A)-1y, (2-7) 

and therefore, given that labor is a scarce resource, the bill of goods is producible only if 

a0(I -AX'y^l • (2-8) 

For the three-industry example, if the bill of final goods to be produced is 

y = [15,23,48]T, the production is given by equation (2- 5), given the total labor with 

X0=[lO     7.5    15 

1.727 0.77 1.186 

0.409 1.345 0.715 

1.696     1.241     3.953 

15 

23 

18 

= 2900  units  of labor. 

An alternate way of viewing the "simple" Leontief input-output model is as a 

linear program, where we minimize labor required to produce the final goods. 

Minimize       /= a„X 

Subject to       (I - A)X > y and 

X>0. 

The optimal solution to this problem is 

X = (I - A)"1 y with/= ao(I - A)-!y . 

In summary, the application of the Leontief input-output model requires dividing 

the system into sectors and, for every sector's production, determining the constant rate 

of consumption from every other sector. We can use the resulting linear system of 

11 



equations to determine each sector's production from a given set of primary factors~in 

this case, only labor. 

2.2 Assumptions of the Leontief Input-Output Model 

The Leontief input-output model makes three basic assumptions. First, input 

resources to an industry are homogeneous. For example, in terms of budgeting, any 

money is "money," or in logistics supply, all fuels are equal, whether JP-8, diesel, or 87- 

octane MOGAS. An analyst may mitigate this assumption, if needed for the analysis, by 

modeling the system at a higher fidelity. For example, the primary fuel factor may be 

divided into the various specific fuels of interest. 

The second assumption—and the strongest—is that the coefficients of production 

are fixed. Specifically, each sector's output requires a certain minimum input of each 

commodity per unit of output. This minimum may be zero, when a particular sector's 

production does not directly use another sector's output. Certain sectors may require 

some of their own output to be directly consumed in future production, such as the classic 

example of "seed corn" necessary to grow more corn. 

Since the technology coefficient, ay, equals the required minimum input of 

commodity i per unit of commodity j, the total possible production from a sector may be 

determined based on the available resources for that sector and these technology 

coefficients. For the three-industry model where i and; equal A, B, and C, Sector A's 

output is constrained by 

XA <min -"•A4    XBA    XCA    X-QA 
) » 3 

^ aAA    aBA    aCA      rAA   J 

(2-9) 
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where aoa is equal to the amount of resource i consumed per unit of sector/s output; py is 

the amount of resource i consumed by resource,/. Since XA equals the smallest of the 

four ratios, XA must be less than or equal to all of the ratios: 

XAA ^ ^/UXA, XBA ^ #BAXA, XCA ^ «CAXA, PAA ^ 'AAXA • 

Dorfman states that in any system not involving free goods, the equality will hold for all 

these ratios because in an efficient economy all of the ratios will be driven to the 

minimum (Dorfman et al, 210). In other words, an efficient system will not produce 

goods (at some expense) that are not used in other production or consumed. Therefore, 

the inequality in equation 2-7 may be replaced with equality. 

The third assumption is generalized returns to scale: If the intensity or the gross 

inputs are doubled or halved then the net outputs will either be doubled or cut in half 

(Dorfman et al, 220). If each required input xg (including primary factors) for sector i is 

multiplied by a constant, the corresponding X,- is also multiplied by that constant, thus 

yielding constant returns to scale. Constant returns exist as production increases until a 

binding constraint is reached. Once production in a sector is limited by some input, any 

increase in the other inputs to that sector beyond that point is excess. 

2.3      Consumption Possibility Schedule 

The consumption possibility schedule is a valuable tool used in economics. It 

illustrates the feasible demands of the modeled economy, based on capacity constraints 

and limited primary factor resources. In economic terms, it can be thought of as a social 

transformation curve (Dorfman et al, 223). 

13 



The availability and distribution of the primary factors determine the consumption 

possibility schedule. The only primary factor in the three-industry example is labor. 

Therefore, the formula for distributing labor is 

P = AX, (2-10) 

where P is a column vector of primary resources available to the economy, and A is the 

matrix of technology coefficients. Equation (2- 4 gives the production required to 

produce a given bill of goods. In order to create the consumption possibility curve we 

must the restate the model; it is shown below. For the three-industry example, this yields 

the form 

X = aX+y, 

where X is an m dimensional column vector of gross outputs for each sector, y is an m- 

dimensional column vector that represents consumption, and a is an m x m square matrix 

of input coefficients. This is shown below. 

0.154 0.300 0.200 

0.077 0.080 0.144 

0.338 0.160 0.616 

xA yA xA 
xB + yB 

= xB 

lXc\ Jc. lXc\ 
, and 

[50.01   27.005   106.97 
yA 

yB = p„ 

Then, 

XA= 50.01XA + 27.005XB + 106.97XC, 

14 



where XA represents net output of commodity A. Substituting from equation 2-9, we get 

PA = 50.01(1.727yA + 0.77yB + 1.186yc) + 27.005(0.409yA + 1.345yB + 

0.715yc) + 106.97(1.696yA + 1.241yB + 3.853yc). 

This shows that the final possible output is limited by the available inputs. 

In a model with only two industries and one primary factor, the consumption 

possibility curve is a straight line. The three-industry example has a three-dimensional 

consumption possibility frontier. 

It can be shown in two-dimensions by limiting one of the outputs to a constant 

and graphing the other two. 

Figure 1: Consumption Possibility Schedule 

Consumption P ossibility Schedule (C = 125) 

CD             - 

0 - 
c ) 

A 

The line represents the maximum amount of inputs that are available, and the 

shaded area below the line is the region of feasible production. In this example, the 

maximum available labor is 2,900 hours. This consumption possibility curve has only 

one primary factor associated with it (labor), and thus is a straight line. 

15 



In the general case of a Leontief input-output model, each primary factor of 

production has a straight line associated with it, and the region of feasible production 

becomes a convex polygon. 

With two or more primary factors, the consumption possibility frontier is piecewise 

linear, and the assumption of generalized returns applies. In defense of constant returns 

to scale, Dorfman, Samuelson, and Solow state: 

It is only when we insist on infinitesimal substitution, on continuously 
varying marginal rates of transformation, on sensitivity of factor 
proportions to all price variations no matter how slight, that we have to 
give up the polygonal frontier for the neoclassical smooth curve. 
(Dorfman et al, 349) 

16 



2.4 Dynamic Leontief Input-Output Models 

The dynamic Leontief input-output model accounts for production and 

consumption of goods and services over periods of time, recognizing that production and 

consumption cannot occur simultaneously. Dorfman and Leontiefs preferred method of 

solving dynamic models is to convert them into a series of static models that are related 

through the stock of the prior period. A dynamic model is converted to a static model 

when each sector for each period becomes a separate sector variable. For example, in the 

three-industry example, if it is solved over two periods, instead of having twelve 

variables, there will be twenty-four sector variables. 

2.5 Capital Stock 

A stock is something that is accumulated in prior periods and then used in a later 

period, creating a lag time. In economic terms, capital stock is capital investment. 

Generally these are items that are going to be used by a firm, or economy, for a long 

period of time, items such as buildings, machinery, or land. The first step in adding 

capital stock to the model is to create the function Sn(t), which is the stock of commodity 

(or primary factor) n at time t (and n = 1, 2, 3). If it is convenient, as a mathematical 

bookkeeping measure, labor can be counted as a commodity and represented by S 

(Dorfman et al, 282). 

Explaining how X\ is produced requires the introduction of Sy. Sy is the flow of 

capital stocks. The first subscript describes the physical nature of the commodity 

concerned, and the second subscript refers to the industry in which the good is employed. 

Therefore, SAA + SAB + SAC is the economy's stock of capital in the form of commodity A. 

17 



SAA, SBA, and SCA describe the capital structure of the industry producing the first 

commodity. In a simple form of the Leontief input-output model, capital stocks should 

be thought of as being present for production purposes, but they are not used up by 

production occurring in the current period (Dorfman et al, 284). 

If each grade of capital stock is homogenous. For example, dollars, the total stock 

is equal to the sum of the separate allocations of the stock among different industries, for 

example 

Si(t) > SiA(t) + SiB(t) + SiC(t). (2-11) 

Writing this as an inequality means that there can be excess capacity in terms of the 

capital good i. This, however, does not show rates of change of the two sides of the 

inequality. When equation (2-11) is an inequality, economically the two sides are 

independent, and have independent rates of growth. Practically, and mathematically, 

while the two sides may have independent growth rates, the fact that the sides are 

independent is ignored. Representing stock this way yields the following system of 

equations for the general Leontief input-output problem: 

XA  ^aAAXA+ aABXB + aACXC + ^A + CA 
XB  ^aBAXA+aBBXB+aBCXC+AS

B+CB 

xc >aCAxA + aCBxB + accxc +ASC+CC (2-12) 

x,.,fl,7,S,.,,C,. >0 

i, j = A, B, or C 

However, this does not allow for use of the stock later, nor does it allow the accumulated 

capital stock to increase the efficiency of the system over time. Therefore, adding the 

stock from the current period, and subtracting the stock from the previous period, will 

allow for negative increases in the total stock level; in general, it will allow for the stock 

18 



that was accumulated in previous periods to be used in future periods. This changes the 

model to 

xA > aAAxA + aABxB + aACxc + (SAt - &u -1) + CA 

XB ^ aBAXA + aBBXB + aBCXC + (5B,f ~ &./ - l) + Cß 

xc > aCAxA + aCBA;ß + accxc + (Sc>, -SA,I-I) + CC, (2-13) 

x^S^C, >0 

1,7 = A,ß,orC 

and r is the time period. 

2.6 Open and Closed Models 

Leontief input-output models may be classified as either open or closed. The 

open model's final products are exported to a final demand sector (in Economics, the 

final demand sector is usually households). The three-industry model is an example of an 

open model. In a closed model, all outputs are inputs to other sectors. No consumption 

exists outside of the system-all consumption occurs within the economy. Economists 

call the closed model an endogenous system. According to Leontief, a static system 

cannot be closed because endogenous exportation requires consideration of the structural 

relationships, and because inputs and outputs occur in different periods of time (Leontief, 

27); ergo, production and consumption cannot occur simultaneously. 

2.7 Fixed Coefficients of Production 

To make this model economically correct, a method is needed to explain the 

behavior of the system over time, the choices among the alternative methods of 

production, and allocation of scarce resources. Conditions need to be added to model the 

19 



economy's efficiency. Leontief's solution to this problem was to assume fixed 

coefficients of production and only one way of producing each output. 

The Leontief production function requires fixed minimum amounts of ay to 

produce xy(t); and lagged capital stock amounts by for each unit of Xj(t). by is the flow 

coefficient of flow input per unit of flow output. It is the capital coefficient representing 

stock input per unit of flow output; we use it as the Research and Development, Testing 

and Evaluation (R&D) lag values. For example, the development of a new airplane has 

built-in lag time associated with it. There is time between when the Concept Exploration 

phase begins and when Production can start. This means that b, unlike a, depends on 

time; however, the ays occur at the same time. A production function for the three- 

industry example with capital stock is: 

XA-F (XAA,xBA,xCA,SAA,SBA,SCA)-imn 
CA4     XBA     XCA     *-*A4     *-> BA     ^ CA 

V UAA     aBA     aCA     bAA      bBA      bCA  ) 

(2-14) 

The production functions for the other industries are similar. The a,jS and the bys must be 

non-negative, since negative consumption is unrealistic. The ays must also satisfy the 

Hawkins-Simon condition, which is if the capital coefficients (ay and by) are all set to 

zero, then this dynamic system is equivalent to a static system with a stock sector. The 

capital requirements divide the net yield (which provided consumption in the static 

model) between consumption and gross investment. 

According to Dorfman, in time t, the dynamic Leontief input-output model for 

three functional areas can be set up as the following system of equations: 
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XA * aAAXA + aABXB + UACXC + ASA + CA 

XB  ^ aBAXA + UBBXB + aBCXC + A5B + C'ß 

xc > aCAxA + aCBxB + accxc + ASC + Cc 

$A — "AA 
+
"AB

X
B 

+
^AC

X
C n. 15) 

SB^bBA+bBBxB+bBCxc 

$c — bcA + "CB
X

B 
+ bccxc 

x,.,a0.,AS,.,C,.,S,.,^0 

i,j = A,B,orC 

where AS,- is equal to S,{t+1) - S,{t). 

2.8 Net Production Model 

So far, we have presented the input-output model based on total sector production. 

Leontief also developed a net production model where each sector's self-consumption is 

accounted before distribution of output (Leontief). Let 

Xi=Xia-aii). (2-16) 

Further, the technology matrix for the net model has elements 

Ä=[äij] = 0, i-j 

a*-,i*j (2-17) 
1-% 

Making the appropriate substitutions into equation 2-2, we may write equation 2-3 

equivalently as 

X = y + AX . (2-18) 
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In this chapter, we can derive all the other relationships for the net production model by 

substituting X for X and A for A. Since the net production model reduces the 

technology coefficients to estimates, we apply it in our research. 

This chapter presents variations of the Leontief input-output model. We apply 

these to model budget relationships in the next two chapters. 
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3       Estimating a Leontief Input-Output Model for the Defense Budget 

The discussion up to this point has assumed that all of the information to construct 

the Leontief input-output model is readily available; however; not all of the data needed 

to estimate model parameters that provide aggregate relationships of the defense budget 

are readily available. Unlike economic systems, we have the dollar output in each 

functional area of the budget, but the inter-sector transfers that relate the sectors are not 

available. This chapter documents several failed attempts to estimate the technology 

coefficients. 

Once we develop an appropriate model using this data, we use Air Force budget 

data to develop a model that will show the portion of the budget that optimally should be 

expended on Research and Development (R&D) to maximize the Operations and 

Maintenance budget (O&M). We have chosen to maximize this portion the budget 

because it represents the operational United States Air Force, and is its "teeth" (GAO, 1). 

3.1       Developing the Input-Output Model 

The model for the Department of Defense budget has five functional areas - 

Operations and Maintenance (O&M), Military Construction (MilCon), Military Personnel 

(MilPer), Procurement (Proc) and Research Development, Testing and Evaluation 

(R&D). We let each of these functional areas represent a sector, and we assess their 

interactions with the Leontief input-output model. We use the aggregate budget data 

from the last forty years to estimate model parameters. We obtained the data shown in 
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Figure 2 from the Air Force Magazine. Appendix A shows the individual data points in 

constant FY 2000 billions of dollars. 

Figure 2: Department of Defense Aggregate Budget Data 1960-2000 
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Fiscal Year 

Our model is based on the static net-production model discussed in Chapter 2, and 

shown below for a single fiscal year. 

X, = el + a,,*, + aX2X2 +... + alnXn 

X2=e2 + a21X1 + a22X2 +... + a2nXn 

Xn=ec + anlX1 + an2X2 + ...+ 

X,,aiy,ei>0 

i,j = 1,2,...,n 

(3-1) 

The variable e, represents excess production in sector i. 

In later estimation approaches, we use the dynamic Leontief input-output model 

to estimate the technology coeffiecents (a,;). We estimated the technology based on the 
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idea of minumum ratios of minimum input of some commodity i per unit of commodity; 

taken across the entire industry. This directly leads to the LINGO program that we wrote 

to estimate the technology coeffiecients-ays-for a given set of fiscal data over a period of 

years. This program is shown in Appendix B; the data set that it uses is shown in 

Appendix A. The goal of this program is to minimize the sum of the errors over the five 

functional areas; these are excess output. Then using this program we obtain an initial set 

of technology coefficients (%s). 

We use several versions of this program; the first one that we use puts zero in the 

ay position that relates MilCon and MilPer, because most military construction is 

contracted out to civilian firms. Military construction is not related to the other 

functional areas because it comes out of a separate section of the DoD budget. We also 

use the net production model, which sets the values on the diagonal of the matrix-the a„s 

to zero, because otherwise we would obtain the trivial solution. These zeros are shown in 

bold face in Table 1. The locations of the initial atjs are shown in Table 3. 

Table 3: Initial Technology Coefficient Locations 

au R&D Proc O&M MilPer MilCon 

R&D 0 0 0.22948 0 0.22948 

Proc 0.08797 0 0.14498 0.32480 0 

O&M 0.16414 0 0 0.49225 1.63929 

MilPer 0.91165 0.19681 0 0 5.24399 

MilCon 0.02682 0.02668 0.00973 0 0 
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When the initial technology coeffiecents are plotted, it is clear that not all of* the 

atj locations are logical. For example, O&M funding should not be directly related to 

R&D funding. Therefore, we set many of the technology coefficients to zero. The 

reason for many of the zero positions is they are related, but only with a lag period. For 

example, a program that starts in R&D progresses to Procurement, and then becomes a 

full-fledged program in O&M-thus the Procurement budget is probably going to have 

more of a direct effect on the O&M budget than on the R&D budget. 

The positions that are forced to zero are shown in Table 4, along with the location 

and values of the new a^s that are determined by the LINGO program. 

Table 4: New Technology Coefficients 

aij R&D Proc O&M MilPer MilCon 

R&D 0 0 0.35307 0 0 

Proc 0 0 0 0.169549 11.53205 

O&M 0 0 0 0 16.82378 

MilPer 0 0 1.08157 0 0 

MilCon 0 0 0 0 0 

The next step is to complete a correlation study to accurately determine where the 

relationships between the functional areas lie. Using the CORREL function in MS Excel 
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to correlate the areas between each other, we arrive at the correlation matrix shown in 

Appendix C. We also must look at the Partial Auto-Correlation Functions (PACF) for 

the functional areas to determine the amount of lag time that is significant. The PACFs 

are obtained using SPLUS, a statistics software package with time-series functions. A 

lagged relationship is one that occurs over more than one time period. For example, 

R&D projects generally take a long period of time. If an R&D project is started today, it 

will generally take several years to complete, and the funding for that project will be 

spread out over all the projected years. Thus, this relationship will occur at a lag. The 

PACFs for the individual functional areas, show different lags are significant. R&D and 

MilCon have no significant lag period, Procurement and MilPers have two, and lastly 

O&M has one significant lag period. These figures are shown in Appendix C. 
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The total budget authority is a compilation of the five functional areas. The 

PACF, as computed by SPLUS, is shown in Figure 2, and it shows the significant lags 

that are dominant for the data set. Significance in the PACFs is shown by rises above the 

dashed line, or for negatives values, drops below it. For the total DoD budget authority, 

only the first lag is significant; this is shown in Figure 3 by the spike rising above the 

dashed line. 

Figure 3: PACF for the DoD Total Budget Authority 
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An example of a PACF with two significant lags is procurement. This is shown in Figure 

4. 

Figure 4: PACF for the DoD Procurement Budget Authority 
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This functional area is significant at two lagged time periods because in the first 

time period, the PACF rises above the significant point; and in the second time period it 

is negatively auto-correlated, and drops below the significance line. The second 

significant negative spike is not being used because currently we are only using two lags. 

The partial auto-correlation functions will form the aus of the Leontief equations. The 

rest of the PACFs are shown in Appendix C. 

We also look at the cross-correlations between the five functional areas to 

determine how many lags are significant. In order to complete the multi-variate cross- 

correlations, we use the statistics package SAS. The SAS program we use to compute the 

cross-correlation between R&D and O&M is shown in Appendix E. 
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The output from that program is displayed in Figure 5, which shows that the cross- 

correlation between R&D budgetary authority and O&M budgetary authority is 

significant at the second lag. 

Figure 5: SAS Output Showing Cross-Correlation between R&D and O&M. 

Cross-Correlations between R&D and O&M 

Lag Covariance   Correlation     -198765432101234567891 

0 -7.324522 -.06719      |            •       1     •                   1 
1 4.790914 0.04395     |                      |*    .                   | 
2 25.539035 0.23426    j                      |*****.                 | 
3 10.197211 0.09354    |                      j**   .                  | 
4 18.558876 0.17024    |                      |*** .                  | 
5 -8.079528 -.07411      |             ■       *i     •                   I 
6 -19.181926 -.17595    |           .    ****|     .                   | 
7 -8.447385 -.07749     |                    **| 
8 0.739949 0.00679    |                       11     .                   | 
9 4.163540 0.03819    |                       |*    .                   | 
10 -8.986959 -.08244    |            .      **|     .                   | 

"." marks two standard errors 

Due to the inherent flexibility in the Leontief input-output tables, the individual 

lags can be built into each of the data series so that more clarity can be achieved in the 

model. Therefore, instead of basing the lags in the entire model on the total DoD budget 

authority, we can base the lags on the individual significant lags for each functional area. 

In our model we use the least lagged values to explain as much of the data as possible, 

then progress to the next lag (where that is applicable). Another nice feature of using the 

Leontief input-output tables is that the error can be tracked by sector; this will allow us to 
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identify areas where the model is not doing a good job, and to adjust only that section 

instead of having to fix the entire model. 

The new Leontief model that we use can be represented by equation 3- 2. This 

series of equations is based on Table 13, which shows the locations of the new a^s. In the 

interest of space, all of the a„s, that are set to zero are not included. However, since 

lagged a„s will not force the linear program to the trivial solution, these are included. We 

also assume that consumption is equal to zero; therefore, these are removed from 

equation 3- 2. The variables that have a prime symbol (') associated with them represent 

one lagged time period; two prime symbols (") means two lagged time periods. 

XRD     —    aRD,RD,XRD'    "*"   aRD,RD"XRD"    "*"   aRD, Proc XProc    +   aRD,OMXOM    "*" 

aRD,MilPerXMilPer    +   aRD, Proc '^Proc1 '     +   aRD,OM,,XOM"    +   aRD,MilPer'XMilPer'    + 

aRD,MilPer,,XMilPer" 

XProc     —    aProc,Proc'XPr oc'    ~*~   aProc, Proc "XRD"    +   aProc,MilPe rXMilPer 

XOM     -    aOM,ProcXProc     +    aOM, Proc ,XProC     +    aOM,OM'XOM'    +    aOM,OM',XOM"    + 

aOM,MilPer"     MilPer" 

XMilPer     —    aMilPer,OMXOM    ^"   aMilPer ,MilPer,XMilPer'    +   aMilPer,MilPer "XMilPer' 

XMilCon     — MilCon,MilCon'     XMilCon'    +MilCon,MilCon"    XMilCon,, 

i, j = RD, Proc, OM, MilPer, or MilCon 
3-2 
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Based on cross-correlations which provide new locations of the a^s, each cell in Table 4 

has three numbers; the first one is the a(j that is not lagged, the second one is the atj at one 

lag, and the third is the ay at two lags. Zeros that are shown in bold face are those that 

have been set to zero in the LINGO program. The LINGO program in Appendix D 

reflects these modifications to the program shown in Appendix A. The program in 

Appendix D results in the technology coeffiecients shown in Table 4. 

Table 4: New Technology Coefficients with Lag Values 

R&D Proc O&M MilPer MilCon 

R&D 0/0/0.047 0/0/0.003 0/0/0.2724 0/0/0 0/0/0 

Proc 0/0/0 0/0.822/0 0/0/0 0/0/0 0/0/0 

O&M 0/0/0 0.226/0/0 0/0.253/0.451 0/0/0 0/0/0 

MilPer 0/0/0 0/0/0 0/0/0 0/0.911/0 0/0/0 

MilCon 0/0.0236/0 0/0/0 0/0/0 0/0/0 0/0.266/0.365 

3.2      Estimating Techonology Coefficients Based on Residuals 

We next use a different estimation method. Instead of LINGO and a linear 

program format, we choose Microsoft Excel and estimate the ay coffiecients from the 

correlation between the residuals and the data points. This estimation method allows us 

to estimate the functional areas individually. This is more easily accomplished than 

attempting to estimate ay coefficeients of this specialized economy in one step. 

The first step in using this new estimation scheme is to set up Excel worksheets, 

one for each of the functional areas. First we establish the worksheets with areas for data 
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points, residuals, correlations, and estimated atj values. After this,we bring in the values 

for ay, carefully checking to make certain that they don't make values of the residuals 

negative. If a residual becomes negative when a proposed ay is brought into the tableau, 

then a red flag is sent up, which indicates that this is too large. The values are picked by 

the amount of correlation by year that is held between the residuals and the sector data. 

The ay values with the highest correlation are tried first. This process is continued across 

all five of the functional areas. The a/, values that are obtained are shown in Table 5. 

Table 5: a^ Values Obtained Using Microsoft Excel. 

aij/aaij/aadij R&D Proc O&M MilPer MilCon 

R&D 0/0/0 0/0/0 0.2836/0.2292/0 0/0/0 0/0/0 

Proc 0/0/0 0/0.7448/0 0/0/0 0/0/0 0/0/0 

O&M 0/0.3957/0 0/0/0 0/0.7036/0 0/0/0 0/0/0 

MilPer 0/0/0 0/0/0 0/0/0 0/0.8950/0 0/0/0 

MilCon 0/0/0 0/0/0 0/0/0.03893 0/0/0 0/0/0 

There is an important difference between this estimation scheme and the previous 

estimation schemes; here the lag values are forward lag values instead of backwards lags. 

We have decided that it is more logical, for the purpose of this thesis, for this year's 

budget to affect next year and the following year's ay values, instead of having it affect 

the two previous years. Therefore, we cannot compare the results of this estimation with 

those of the previous estimation. Instead we must reestimate the atj values that were 
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obtained using LINGO to use the forward lag. The rewritten LINGO program estimating 

the ay coefficients is shown in Appendix F. The results of running this program are 

shown in Table 6. 

Table 6: ay Coefficients From LINGO With Forward Lags 

R&D Proc O&M MilPer MilCon 

R&D 0/0.149/0.176 0/0/0 0/0/0.1486 0/0/0 0/0/0 

Proc 0/0/0 0/0.571/0 0/0/0 0.150/0/0 0/0/0 

O&M 0/0/0 0/0/0 0/0.785/0.046 0/0/0 0/0/0 

MilPer 0/0/0 0/0/0 0.1132/0/0 0/0.825/0 0/0/0 

MUCon 0/0/0 0/0/0 0/0/0 0/0/0 0/0.318/0 

Comparing the values obtained through the two different estimation techniques, we see 

that both the position and the values of the ay coeffiecients are similar. 

Next we add two extra lag values to the Procurement functional area. Doing this 

changes the nature of the chart so that the second row contains five different values. The 

first three values are the same as in previous estimations. The fourth and fifth values are 

the next forward lagged values. 
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However, the ay values are calculated separately by functional area; thus, only the 

Procurement line of Table 6 will change. The new a,y values are shown below in Table 7. 

Table 1 ̂: atj Values Obtained Using Microsoft Excel With More Forward Lags 

R&D Proc O&M MilPer MilCon 

R&D 0/0/0 0/0/0 0.284/0.23/0 0/0/0 0/0/0 

Proc 0/0/0/0/0 0/0.748/0/0/0 0/0/0/0/0 0/0/0/0/0 0/0/0/0/0 

O&M 0/0.396/0 0/0/0 0/0.704/0 0/0/0 0/0/0 

MilPer 0/0/0 0/0/0 0/0/0 0/0.895/0 0/0/0 

MilCon 0/0/0 0/0/0 0/0/0.039 0/0/0 0/0/0 

Looking at the values for ay shown in Table 7, we realize that these have the same 

problem as the values that are obtained using LINGO-a lack of connections between the 

functional areas. This means that when any one functional area is at its maximun, all of 

the remaining areas must be zero. 

Since we know that, in reality, there are connections between these functional 

areas, we next add a constraint to the Microsoft Excel spreadsheet to measure the 

connectivity. Then we check the combinations of a,ys that maximize the connections 

between the functional areas. An example is the connection between R&D and 

Procurement—R&D programs lead to Procurement programs; thus, this is a direct 

connection. 

We believe that pathways do exist in the Air Force. If this is correct, we should 

be able to use a combination of minimizing the error and maximizing the connectivity to 
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obtain a set of atj values that explain how the DoD uses its budget money. Using this 

modified estimation scheme, we obtain the values shown in Table 8. 

Table 8: a« Values Modified MS Excel Estimation Scheme. 

R&D Proc O&M MilPer MUCon 

R&D 0/0/0 0/0/0 0.2836/0/0 0/0/0 0/0/0 

Proc 0/0/0 0/0.099/0 0.3365/0/0.0320 0/0/0 0/0/0 

O&M 0/0.1/0.7 0/0/0 0/0.4/0 0.2/0/0 0/0/0 

MilPer 0/0/0 0.2/0/0.1 0.231/0.2/0 0/0.2/0 0/0/0 

MUCon 0/0/0 0/0/0 0/0/0.03893 0/0/0 0/0/0 

These a^s appear to be reasonable: There are very few unexpected connections, 

the values are not extremly high or low, and there is significantly more connectivity than 

in many of the previously attempted estimations. 

We next place these a-,j values into a linear program and estimate how much of the 

budget should be be spent on R&D in order to maximize O&M. The critical assumption 

of this linear program is that the budget is in steady state. The LINGO program is shown 

in Appendix G. 
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It is designed to maximumize the amount of O&M as a percentage of the DoD budget. 

The results of Appendix G are shown in Table 9. 

Table 9: Proposed Optimal Funding Levels for the DoD budget 

Functional Area Proposed 
Funding 

(%) 

Average 
Historical 
Funding 

(%) 

R&D 11.7 11.1 

Procurement 16.8 24.2 

O&M 41.3 29.7 

Military 
Personal 

28.6 33.2 

Military 
Construction 

1.6 1.8 

Comparing the predicted levels of funding to the historical averages shows that 

most of the areas are similar, and that a tradeoff exists between Procurement and O&M. 

This is a descriptive model, so recreating numbers that are similar to the historical 

averages acts as a justification for this model. 

From here we change data sets to the Air Force's budget data, use the modified 

estimation scheme, and then place those results into LINGO. When we place the Air 

Force's budget data and the appropriate technology coefficients into the LINGO model, 

we are unable to reproduce anything similar to the historical averages. 
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We theorize that this is true because this estimation scheme looks for the 

minimization of the error. However, when this is more closely examined, it appears that 

the lowest point is an outlier; because of this, the estimation scheme will have problems 

finding appropriate technology coefficients. A different estimation system, one that is 

not based on low outliers, is the next one used in an attempt to establish technology 

coefficients for the Air Force; this estimation trial is detailed in Chapter Four. 
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4.      Using Regression to Estimate the Technology Coefficients 

In the last chapter, we attempted to use correlation to come up with the fly- 

coefficients for the Leontief input-output table. In this chapter, we detail a new 

estimation scheme that uses regression to come up with the technology coefficients. This 

estimation scheme uses the same breakout of the aggregate Air Force budget 

(Procurement, Operations and Maintenance, Military Personnel, Military Construction, 

and Research and Development) that we used in previous chapters. 

We also model the budget data with eight sectors-Strategic Forces and General 

Purpose Forces, Special Operations, Intelligence and Communications, Research and 

Development, Air National Guard and Air Force Reserve (ANG&AFR), Central Supply 

and Maintenance, and Training Medical and General Personnel. Two other sectors 

(Administration and Associated Costs, and Support of Other Nations) in this budget 

breakout are relatively small and do not appear to be related to the other areas. 

Therefore, we did not include them. 

4.1      Regression Estimation Scheme on the Five-Sector Problem 

We use regression to model the distribution of net output among the other sectors. 

Each row in equation 2-2 is a separate regression equation. The budget for each fiscal 

year is treated as the dependent variable, and the other sector budgets are the independent 

variables. The resulting intercept represents the final demand, y,-, and the resulting 

regression coefficients are the estimated technology coefficients, ay. Relationships are 

accepted if several conditions are met. First, the relationship needs to be one that could 

happen in the military. For example, MilCon does not support R&D. Second, the 
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relationship needs to be statistically significant. Finally, the intercept and coefficients 

should be non-negative. If two or more regressions meet these criteria, we choose the 

regression that has the highest Revalue. In Figure 6 the amounts under R&D and MilPer 

represent the final demands. These may be considered fixed costs that do not vary based 

on the receiving sectors. The arrows between sectors represent the amounts spent per 

each dollar in the other areas. For example, for each dollar spent in Proc budget, an 

additional 23 cents is required in the R&D budget. This is the final set of relationships 

that we have chosen for the Air Force. 

Figure 6: Air Force Budget Relationships in the Five Functional Area Problem 

$0.43 

The Proc relationship with O&M has a negative intercept. In effect, the first $16.7 billion 

of O&M does not appear to require Proc support. 

The Leontief input-output model that we use is a net flow model. We solve the 

linear program for every fiscal year using the estimated technology coefficients. Each 

problem has one additional constraint-trie total budget not be exceeded. The program 

that we use to solve these problems is in Appendix H and is written for fiscal year 1962. 
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We now look at the results for the unbounded model; the binding constraint on this model 

is that the total budget for that fiscal year must not be exceeded. For each fiscal year, we 

solve the model as a linear program that maximizes O&M. 

When we compare the model results to the actual budgets, we see that the overall 

averages for each area are nearly the same. The variability in the model's results is 

considerably less than the actual data. The model results indicate that the budget 

percentage for R&D and MilCon are steady at approximately 14% and 2% (respectively) 

of the total Air Force budget. 

As the total budget increases from seventy-seven billion dollars to one hundred 

forty-three billion dollars, the percent spent on MilPer changes from approximately 32% 

to approximately 25% and O&M from 30% to 25%. These changes are shown in 

Appendix I. During the same time period, Procurement increases from 22% to 35%. 

This is a descriptive—not a causal model. It reflects acquisition policy over the last thirty 

years. 

If the budget continues to remain in the range of seventy to eighty billion dollars 

per fiscal year, this model indicates a challenge for Air Force leadership. Procurement 

will remain relatively low as a percentage of the total budget and in dollar amount as 

well. Increasing Procurement requires a corresponding increase in Research and 

Development. In order to change how a lower budget would react, the Air Force would 

have to change the acquisition process drastically to reflect how the United States 

military funding has changed. 

41 



4.2      Eight Sector Technology Coefficient Scheme 

This estimation scheme is based on the same idea as the one detailed in the 

previous section. The only difference is that this one uses a different compilation of 

budget data from ABIDES. In this scheme, we broke the ABIDES data into nine sectors- 

-Strategic Forces, General Purpose Forces, Special Operations, Intelligence and 

Communications, Research and Development, Air National Guard and Air Force Reserve 

(ANG&AFR), Central Supply and Maintenance, and Training Medical and General 

Personnel. Also included in this ABIDES breakout, although we don't use them, are 

Support of Other Nations, and Administration and Associated Costs. 

The first step after getting the data, and looking at the nine sectors, is to identify 

the appropriate relationships. We use the same technique as before and come up with 

relationships that cannot statistically occur due to multicolinearity. The General Purpose 

Forces and Strategic Forces are very highly correlated; therefore, their impact cannot be 

separated. Our next step is to change the budget breakout. Thus, we combine General 

Purpose Forces and Strategic Forces into one new functional area-Forces. 

We divide the budget into three areas-Combat Forces, Supporting Forces, and 

Supporting Functions. Combat Forces is at the top of the pyramid shown in Figure 

Seven, and consists of Forces (General Purpose and Strategic Forces) and Special 

Operations, neither of which support any other sector. Supporting Forces consists of 

Intelligence and Communications, and Airlift. They support themselves and Combat 

Forces. 
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Finally, Supporting Functions consists of the Air National Guard/Air Force Reserve, 

Research and Development, Central Supply and Maintenance, and finally, Medical and 

General Personnel. The Supporting Functions can support all of the other budget areas. 

Figure 7: Functional Area Relationships 
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Initially, we thought that Airlift would support Combat Forces; however, it turns 

out not to support any other sector in this model. We assume that it doesn't support Air 

Force Combat Forces because the Air Force's Airlift capacity probably supports the 

Army. 

By delineating the relationships before we complete the regression, we are able to 

eliminate some relationships that do not appear to be able to occur in the Air Force today. 

For example, there does not appear to be a direct relationship between Medical and 

General Personnel, and Central Supply and Maintenance. Therefore, we are able to 

eliminate the indirect relationships and concentrate on direct ones. When we complete 
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the regressions, examine the p-values, Revalues, and ensure positive intercepts, we 

obtain the relationship tree that is shown in Figure 8. 

Figure 8: Relationship Tree in the Eight-Sector Problem 

In Figure 8, the fixed minimum in the sector is below the name. 

We use LINGO to solve the problem, and the program that we use to solve it is in 

Appendix J. The results from this program (FY1980-FY89) are shown below the 

program in Appendix J. This model forces some of the functional areas to zero because it 

is not efficient to place resources into them. For example, when maximizing the sum of 

Forces, Special Operations, and Airlift, Forces requires fewer inputs than other 

combinations; therefore, all available resources are placed in Forces. In order to place 

one dollar into Intelligence and Communications, it requires twenty cents of Personnel; 

however, for that dollar to be placed into Forces, it only requires ten cents worth of 

Personnel. This model seeks to act in the most efficient manner possible; therefore, it is 
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not prudent to place money into the more expensive functional areas. Hence, Forces are 

maximized while Special Operations and Airlift are set to zero. 
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5.      Conclusions and Follow-On Research 

We have tried two very dissimilar estimation techniques—minimizing the error 

and regression—while trying to estimate the technology coefficients that could be used in 

a Leontief input-output model for the Air Force budget problem. 

The DoD data set is significantly larger than the Air Force data set-it contains 

twenty extra years of data. This might explain why the DoD aggregate budget problem 

works better. A possible area of future research suggested by our study is to is to use our 

second estimation technique on an expanded Air Force data set. 

Another area of future research could be to expand the eight-sector model by 

incorporating the Army's budget data into it. Since the Army and the Air Force often 

work jointly, it would be interesting to see if there are inter-relationships between the two 

services, especially the reimbursement portion of each service's budget. Another 

interesting way to expand this model would be to add the Navy into the Air Force budget 

problem. There is a known relationship between the two military forces—the Navy quite 

often provides high-volume sealift and other services to the Air Force. 
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Therefore, this is a two-step process: solve either the Army's or the Navy's aggregate 

budget problem, and then relate the services to each other. The relationships between the 

services are shown in Figure 9. 

Figure 9: Future Years Defense Program 

DOD APPROPRIATIONS 

MAJOR 
FORCE 

PROGRAMS 

Support of Other Nations 

Special Operations Forces 

47 



Bibliography 

Dorfman, Robert; Samuelson, Paul A; Solow, Robert M. Linear Programming and 
Economic Analysis. 2nd ed. New York: Dover Publications, 1987. 

Dudney, Robert S. "Defense Spending Illusions and Realities." Air Force Magazine: 
Journal of the Air Force. April 2000, pp. 62-66. 

Hillier, Frederick S; Lieberman, Gerald J. Introduction to Operations Research. 1st ed. 
San Francisco: Holden-Day, 1967. 

Leontief, Wassily. Input-Output Economics. 2nd ed. New York: Oxford University 
Press, 1986. 

Miller, Ronald E. and Blair, Peter D. Input-Output Analysis Foundations and Extensions. 
Englewood Cliffs: Prentice-Hall, 1985. 

Patton, George T; Snyder, Jr. Christopher L; Szynkowski. Planning, Programming and 
Budgeting Under the New Laird/Packard Fiscal Constraints: The Role of the 
Electric FYDP System. Office of the Secretary of Defense: Systems Analysis, 
1971. 

Snodgrass, Anthony. Modeling Strategic Effects Using the Input-Output Model: A 
Thesis. Air Force Institute of Technology: 2000. 

United States General Accounting Office. Defense Budget: Analysis of Operations and 
Maintenance Accounts for 1985-2001. General Accounting Office, 1997. 

Wassily Leontief and His Contributions to Economic Accounting. Survey of Current 
Business. Vol. 79 Issue 3, March 1999, pp. 9-12 

Wu, Nesa; Coppins, Richard. Linear Programming and Extensions. McGraw-Hill Book 
Company: 1981. 

48 



Appendix A: Department of Defense Aggregate Budget Data (FY00$B) 

Year R&D Proc O&M Mil Pers Mil Con 
FY1960 29.7 68.1 69.8 105.3 7.1 
FY1961 30.9 71.1 68.9 105.7 5.5 
FY1962 32.8 94.1 72.9 114.6 4.1 
FY1963 35.5 97 71.5 113.1 6.1 
FY1964 35.1 86.6 71.1 114.7 4.7 
FY1965 32 74.7 73.2 116.2 5 
FY1966 32.2 100.3 84.7 122.7 11.6 
FY1967 33.1 110 101.6 137.1 4.9 
FY1968 32.6 107.9 105.9 143.1 6.6 
FY1969 33 90.7 107.8 145.5 4.8 
FY1970 30.4 76.3 97.5 141.5 3.8 
FY1971 87.7 63.5 87.7 132.6 4.9 
FY1972 28 67.5 83.5 121.2 4.5 
FY1973 28 61.4 82 114.3 4.4 
FY1974 26.2 55.3 81.4 111.5 4.5 
FY1975 24.9 49.5 80.1 109.9 5.2 
FY1976 25.5 57.8 81.9 107.6 5.9 
FY1977 25.9 69.3 83.9 106.7 5.1 
FY1978 26 67.1 84 106.1 3.5 
FY1979 25.7 64.8 85.7 106.1 4.5 
FY1980 25.5 65.8 89.9 107.3 4.1 
FY1981 28.6 82.2 97.3 110.8 5.7 
FY1982 32.7 103.3 104.2 112.7 7.9 
FY1983 35.8 122.3 108.5 114.9 7 
FY1984 40.6 126.6 113.8 115.5 6.8 
FY1985 45.9 138.1 121.8 111.5 8.1 
FY1986 48 128.1 116.5 108.3 7.5 
FY1987 49.4 107.5 119.5 107.5 7 
FY1988 48.7 103.1 118.7 113.9 7 
FY1989 48 98.7 119.5 113 7.2 
FY1990 44.9 97.7 118.3 111.9 6.2 
FY1991 43 83.7 144.4 113.8 6.1 
FY1992 42.2 69.6 105.7 103.7 6.1 
FY1993 42.9 59 107.4 95.8 5.2 
FY1994 38.5 48.5 103.9 87.8 6.7 
FY1995 37.7 47.1 107.9 86 5.9 
FY1996 37.5 45.2 105.3 82 7.4 
FY1997 38.4 45.2 101.7 '     80.2 6 
FY1998 38.7 46.7 104.3 77.2 5.8 
FY1999 39.6 52.5 110.7 75.8 5.6 
FY2000 39.1 55.1 108.8 76.1 4.9 
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Appendix B: ay generation in LINGO. 

!A Leontief Input-Output model of the DoD budget; 
SETS: 
! Sectors are the five major functional areas of the DoD budget authorization; 

SECTORS/ OM RD MILPER PROC MILCON/: FUNDS; 
YEARS / FY1960 FY1961 FY1962 FY1963 FY1964 FY1965 FY1966 FY1967 

FY1968 FY1969 FY1970 FY1971 FY1972 FY1973 FY1974 FY1975 FY1976 FY1977 
FY1978 FY1979 FY1980 FY1981 FY1982 FY1983 FY1984 FY1985 FY1986 FY1987 
FY1988 FY1989 FY1990 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996 FY1997 
FY1998 FY1999 FY2000/: CONSUMPTION; 

BYSECTORS (SECTORS, SECTORS): A; 
BYYEAR (SECTORS, YEARS): BUDGET, ERRORS; 

ENDSETS 

!The objective function = minimize the sum of the errors; 
MIN = @SUM( BYYEAR(I, J): ERRORS(I, J)); 
! Constraints; 
@FOR( BYYEAR(I, J): 

@SUM( SECTORS(K): BUDGET(K, J)*A(I, K)) - ERRORS(I, J) = BUDGET(I, 

J); 
@SUM(SECTORS(I):A(I, I)) = 0; 

!The data; 
DATA: 
llmport the data from MS Excel; 

CONSUMPTION = @OLE( 'D:\THESIS\PARAMETER ESTIMATION* 
AU_ESTIMATION.XLS'); 

BUDGET = @OLE( 'D:\THESIS\PARAMETER ESTIMATION 
AU_ESTMATION.XLS'); 
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Appendix C: Correlation Study Results 

Auto-Correlation Table for DoD Budget Data 1960-2000 

Lag R&D PRoe O&M MilPer MilCon Total 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0.261726 0.903172 0.867917 0.955533 0.236027 0.878177 
0.252122 0.715044 0.779279 0.852023 0.247649 0.702451 
0.172154 0.527604 0.647332 0.710826 0.198293 0.48431 
0.104928 0.358104 0.541745 0.549515 -0.15948 0.252483 
0.037375 0.142577 0.411675 0.387877 0.04612 -0.00307 
-0.02793 -0.12245 0.309345 0.231518 0.083073 -0.28426 
-0.05206 -0.38807 0.210471 0.086859 -0.03509 -0.50972 
-0.10535 -0.59912 0.19576 -0.01513 -0.00128 -0.6546 
-0.18686 -0.73515 0.182091 -0.05988 -0.0463 -0.75502 
-0.20412 -0.80026 0.189002 -0.01648 -0.06782 -0.78329 
-0.19327 -0.81679j 0.189292 0.064607 -0.18443 -0.73315 
-0.15348 -0.7781 0.202955 0.185056 -0.43131 -0.58561 
-0.0735 -0.63665 0.246987 0.304414 -0.28902 -0.4058 

0.041915 -0.44038 0.320939 0.362933 -0.3272 -0.17465 
0.104215 -0.21793 0.382165 0.398228 -0.24588 0.028619 
0.163569 0.023715 0.452124 0.434845 0.070082 0.240915 
0.181514 0.2781 0.518883 0.485084 -0.05422 0.459232 
0.210282 0.548067 0.551782 0.533395 -0.13559 0.642175 
0.168586 0.729971 0.527887 0.57507 0.263641 0.740841 
0.154019 0.770661 0.489635 0.590378 0.188168 0.748956 
0.162515 0.751033 0.478152 0.544959 0.206162 0.602269 
0.22474 0.700953 0.426302 0.425317 0.315246 0.465145 
-0.01928 0.584032 0.16873 0.23725 0.216982 0.2517341 
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Partial Auto-Correlation Function Tables for the DoD Functional Areas 
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Appendix D: ay generation in LINGO (Three Lags) 

MODEL: 
! A Leontief Input-Output Model of the DoD Budget; 

SETS: 
ISectors are the five major areas of budget authorizations; 

SECTORS/ RD PROC OM MILPER MILCON/: FUNDS; 
YEARS/ FY1960 FY1961 FY1962 FY1963 FY1964 FY1965 FY1966 FY1977 

FY1968 FY1969 FY1970 FY1971 FY1972 FY1973 FY1974 FY1975 FY1976 FY1977 
FY1978 FY1979 FY1980 FY1981 FY1982 FY1983 FY1984 FY1985 FY1986 FY1987 
FY1988 FY1989 FY1990 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996 FY1997 
FY1998 FY1999 FY2000/; 

BYSECTORS (SECTORS, SECTORS): A, AA, AAA; 
BYYEAR (SECTORS, YEARS): BUDGET, ERRORS; 

ENDSETS 

!The objective function -> minimize error; 
MIN = @SUM( BYYEAR(I, J): ERRORS(I,J)); 
! Constraints; 

!i=years, j=sectors; 
@FOR( BYYEAR(I, J)| J #GE# 3: 

@SUM(SECTORS(K):A(I,K)*BUDGET(K, 
J))+@SUM(SECTORS(K):AA(I,K)*BUDGET(K,J- 
l))+@SUM(SECTORS(K):AAA(I,K)*BUDGET(K,J-2))+ERRORS(I,J) = 
BUDGET(IJ)); 

@SUM(SECTORS(I):A(I,I)) = 0; 

!AAA is the second lag period; 
AAA(MILPER,MILPER) =0; 
!R&D; 
A(RD,PROC)=0; 
AA(RD,PROC)=0; 
A(RD,OM)=0; 
AA(RD,OM)=0; 
A(RD, MILCON)=0; 
AA(RD,MILCON)=0; 
AAA(RD,MILCON)=0; 
IProcurement; 
A( PROC, RD)=0; 
AA( PROC, RD)=0; 
AAA( PROC, RD)=0; 
A(PROC, OM)=0; 
AA(PROC, OM)=0; 
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AAA(PROC, OM)=0; 
AA(PROC, MILPER)=0; 
AAA(PROC, MILPER)=0; 
A(PROC, MILCON)=0; 
AA(PROC, MDXON)=0; 
AAA(PROC, MILCON)=0; 
!0&M; 
A( OM, RD)=0; 
AA( OM, RD)=0; 
AAA( OM, RD)=0; 
AAA( OM, PROC)=0; 
A( OM, MILPER)=0; 
AA( OM, MILPER)=0; 
A(OM, MILCON)=0; 
AA(OM, MILCON)=0; 
AAA(OM, MILCON)=0; 
IMilitary Personnel; 
A(MILPER, RD)=0; 
AA(MILPER, RD)=0; 
AAA(MILPER, RD)=0; 
A(MILPER, PROC)=0; 
AA(MELPER, PROC)=0; 
AAA(MILPER, PROC)=0; 
AA(MILPER, OM)=0; 
AAA(MILPER, OM)=0; 
A( MILPER, MILCON)=0; 
AA( MILPER, MILCON)=0; 
AAA( MILPER, MELCON)=0; 
IMilitary Construction; 
@SUM(SECTORS(I):A(MILCON,I)) = 0; 
AA(MILCON, RD)=0; 
AAA(MILCON, RD)=0; 
AA(MELCON,PROC)=0; 
AAA(MILCON,PROC)=0; 
AA(MILCON, OM)=0; 
AAA(MELCON, OM)=0; 
AA(MILCON, MILPER)=0; 
AAA(MILCON, MILPER)=0; 
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!the data; 
DATA: 
[Import the data from MS Excel; 

BUDGET= @OLE( T>:\AFIT\THESIS\AIJ 
ESTMATIONXAD.ESTMATION.XLS'); 
ENDDATA 

END 
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Appendix E: SAS Program for Calculating Cross Correlations. 

data sample; 
input RDOM; 
cards; 
29.7 68.1 
30.9 71.1 
32.8 94.1 
35.5 97 
35.1 86.6 
32 74.7 
32.2 100.3 
33.1 110 
32.6 107.9 
33 90.7 
30.4 76.3 
87.7 63.5 
28 67.5 
28 61.4 
26.2 55.3 
24.9 49.5 
25.5 57.8 
25.9 69.3 
26 67.1 
25.7 64.8 
25.5 65.8 
28.6 82.2 
32.7 103.3 
35.8 122.3 
40.6 126.6 
45.9 138.1 
48 128.1 
49.4 107.5 
48.7 103.1 
48 98.7 
44.9 97.7 
43 83.7 
42.2 69.6 
42.9 59 
38.5 48.5 
37.7 47.1 
37.5 45.2 
38.4 45.2 
38.7 46.7 
39.6 52.5 
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39.1    55.1; 
proc arima; 
identify var=RD(l) noprint; 
estimate p=2 q=0 noconstant; 
identify var=OM(l) crosscor=(RD(l)) NLAG=10; 

run; 
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Appendix F: LINGO Program for Estimating ay Coefficients with Forwards Lags. 

MODEL: 
! A Leontief Input-Output Model of the DoD Budget; 

SETS: 
ISectors are the five major areas of budget authorizations; 

SECTORS/ RD PROC OM MILPER MILCON/: FUNDS; 
YEARS/ FY1960 FY1961 FY1962 FY1963 FY1964 FY1965 FY1966 FY1977 

FY1968 FY1969 FY1970 FY1971 FY1972 FY1973 FY1974 FY1975 FY1976 FY1977 
FY1978 FY1979 FY1980 FY1981 FY1982 FY1983 FY1984 FY1985 FY1986 FY1987 
FY1988 FY1989 FY1990 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996 FY1997 
FY1998 FY1999 FY2000/; 

BYSECTORS (SECTORS, SECTORS): A, AA, AAA; 
BYYEAR (SECTORS, YEARS): BUDGET, ERRORS; 

ENDSETS 

!The objective function -> minimize error; 
MIN = @SUM( BYYEAR(I, J): ERRORS(I,J)); 
! Constraints; 

!i=years, j=sectors; 

!The difference between this program and the one shown in Appendix D is highlighted in 
boldface type; 

@FOR( BYYEAR(I, J)| J #LE# 39: 
@SUM(SECTORS(K):A(I,K)*BUDGET(K, 

J))+@SUM(SECTORS(K):AA(I,K)*BUDGET(KJ+l))+@SUM(SECTORS(K):AAA(I 
,K)*BUDGET(KJ+2))+ERRORS(I,J) = BUDGET(IJ)); 

@SUM(SECTORS(I):A(I,I)) = 0; 

!AAA is the second lag period; 
AAA(MILPER,MILPER) =0; 
!R&D; 
A(RD,PROC)=0; 
AA(RD,PROC)=0; 
A(RD,OM)=0; 
AA(RD,OM)=0; 
A(RD, MILCON)=0; 
AA(RD,MILCON)=0; 
AAA(RD,MILCON)=0; 
[Procurement; 
A( PROC, RD)=0; 
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AA( PROC, RD)=0; 
AAA( PROC, RD)=0; 
A(PROC, OM)=0; 
AA(PROC, OM)=0; 
AAA(PROC, OM)=0; 
AA(PROC, MILPER)=0; 
AAA(PROC, MILPER)=0; 
A(PROC, MILCON)=0; 
AA(PROC, MILCON)=0; 
AAA(PROC, MILCON)=0; 
!0&M; 
A( OM, RD)=0; 
AA( OM, RD)=0; 
AAA( OM, RD)=0; 
AAA( OM, PROC)=0; 
A( OM, MILPER)=0; 
AA( OM, MILPER)=0; 
A(OM, MILCON)=0; 
AA(OM, MILCON)=0; 
AAA(OM, MILCON)=0; 
IMilitary Personnel; 
A(MILPER, RD)=0; 
AA(MILPER, RD)=0; 
AAA(MILPER, RD)=0; 
A(MILPER, PROC)=0; 
AA(MILPER, PROC)=0; 
AAA(MILPER, PROC)=0; 
AA(MILPER, OM)=0; 
AAA(MILPER, OM)=0; 
A( MILPER, MILCON)=0; 
AA( MILPER, MILCON)=0; 
AAA( MILPER, MILCON)=0; 
JMilitary Construction; 
@SUM(SECTORS(I):A(MILCON,I)) = 0; 
AA(MILCON, RD)=0; 
AAA(MELCON, RD)=0; 
AA(MILCON,PROC)=0; 
AAA(MILCON,PROC)=0; 
AA(MILCON, OM)=0; 
AAA(MILCON, OM)=0; 
AA(MILCON, MILPER)=0; 
AAA(MILCON, MILPER)=0; 

!the data; 
DATA: 
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Ilmport the data from MS Excel; 
BUDGET= @OLE( 'D:\AFIT\THESIS\AU 

ESTMATION\AUJESTIMATION.XLS*); 
ENDDATA 
END 
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Appendix G: LINGO Program to Estimate Optimal Budget Levels 

Model: 
Max = x3; 
(0.6686+0.194+0.01 l)*x2 + (.0457+0.0329+0.03315)*x3 + (0.043+0.0297+0.02932)*x4 
<=xl; 
(0+0.00492)*xl + (0+0.02887)*x2 + (0.5289+0.0659)*x3 <= x2; 
(0.023+0.1209+0.023 l)*xl + (0.026+0.2414+0.034)*x2 + (0+0.189+0)*x3 + 
(0.071+0.0504+0.047)*x4 + (0.0023+00.00268)*x5 <= x3; 
(0.0140+0.0122+0.0135)*xl + (0.123 8+0+0.00146)*x2 + (0.4451+0.041+0.04188)*x3 + 
(0.0013+0+0)*x4 + (0.0122+.0011+0.0160)*x5 <= x4; 
(0.O0965+O.00965+O.00965)*xl + (0.02278+0+0)*x2 + (0.0013+0+0)*x5 <= x5; 

xl + x2 + x3 + x4 + x5 = 100; 
end 
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Appendix H: LINGO Program for Five-Sector Regression Problem 

This model is for the 1962 fiscal year problem. 
Model: 
Max = OM; 
RD - 0.227708*PROC >= 7.233544; 
PROC - 2.622166*(OM-16.6678) >= 0; 
MILPER - 0.845477*OM >= 4.893739; 
MILCON - 0.055221*PROC >= 0; 
RD + PROC + OM + MILPER + MILCON <= 108.2; 
end 
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Appendix I: Sorted and Arrayed Five-Sector Regression Model Results 

Sorted Unbounded Percentages 

Fiscal 
Year R&D Proc O&M Mil Per 

Mil 
Con 

Total Budget 
Dollars 

(Millions) 

1997 14.5%B^S| 
29.8% 

77.1 
1998 14.4% 23.1% 31.4% 1.3%) 79.4 

1979 14.3% 23.3% 29.7% 31.2% 1.5% 80.1 

1975 14.4% 23.4% 29.7% 31.2% 1.3%) 80.2 

1996 14.3% 23.5% 29.7% 31.2% 1.3% 80.3 
1995 14.3% 23.7% 29.6% 31.1% 1.3%) 81.0 
1976 14.3% 23.7% 29.6%) 31.1% 1.3% 81.0 
1978 14.3% 23.8% 29.5% 31.0%) 1.3%) 81.5 
1974 14.3% 24.3% 29.4% 30.7% 1.3%) 83.0 
1977 14.2% 24.5% 29.3% 30.6% 1.4% 83.4 
1994 14.2% 24.5% 29.3% 30.6% 1.4%) 83.7 
1980 14.2% 24.7% 29.2% 30.5%) 1.4% 84.2 
1993 14.5% 24.0% 29.5% 30.5% 1.5%) 87.7 
1973 14.1% 26.2% 28.6% 29.7% 1.4% 89.4 
1972 13.9% 27.1% 28.3%o 29.1% 1.5%) 93.1 
1981 13.9% 27.5% 28.1% 28.9% 1.5% 94.6 
1992 13.9% 28.1% 27.9% 28.6%) 1.5% 96.9 
1971 13.8% 28.3% 27.8%) 28.5% 1.6%) 98.1 
1970 13.6% 30.3% 27.0% 27.4% 1.7% 107.9 
1982 13.6% 30.3% 27.0%) 27.4% 1.7%) 108.0 
1991 13.6% 30.4% 27.0%) 27.3% 1.7% 108.2 
1965 13.5% 31.4% 26.6% 26.8%) 1.7%) 114.3 
1983 13.4% 31.8% 26.4%) 26.6% 1.8%) 116.2 
1990 13.4% 3 L9% 26.4% 26.5%) 1.8% 117.3 
1964 13.4% 32.4% 26.2% 26.2% 1.8% 120.4 
1988 13.4% 32.5% 26.1% 26.1% 1.8% 121.3 
1989 13.3% 32.9% 26.0% 26.0% 1.8% 123.7 
1969 13.3% 33.1% 25.9% 25.8% 1.8% 125.4 
1962 13.3% 33.2% 25.9% 25.8% 1.8% 125.7 
1963 13.3% 33.3% 25.8% 25.7% 1.8% 127.0 
1968 13.3% 33.5% 25.8% 25.6% 1.8% 128.2 
1984 13.3% 33.6% 25.7% 25.5% 1.9% 129.1 
1966 13.3% 33.6% 25.7% 25.5% 1.9% 129.3 
1961 13.2% 33.8% 25.7% 25.5% 1.9% 130.2 
1987 '    13.2% 34.0% 25.6% 25.3% 1.9% 132.4 
1986 i    13.2% 34.6%|  25.4% 25.0% 1.9% 136.9 
198f -   i3.i%WS^MMSmS^mm^mm        143.5 
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Appendix J: LINGO Program to Solve the 3-Area 8-Sector Problem 

MODEL: 
MAX = forces + specops +airlift; 
RD - 0.16*FORCES >=4211391; 
TRAIN - 0.095*FORCES - 0.201* INTEL >= 3142027; 
SUPPLY - 0.2001*FORCES -1.26* SPECOPS >= 45707; 
INTEL - 4.59*SPECOPS -1.24*AIRLIFT >= 7036931; 
ANG - 0.144*INTEL >= 4396755; 
RD + TRAIN + SUPPLY + INTEL + ANG + FORCES + SPECOPS + AIRLIFT <= 
133633029; 

END 

The Results from the LINGO program above: 

Fiscal   1                    ittfeuaaai 
Year    1                      R&inftsMP SrrKff&SSaTfm 

BSR 43,270,800 0 7,036,931 0 5,410,073 11,134,720 8,704,194 8,667,176 84,223,894 

1981 50,464,180 0 7,036,931 0 5,410,073 12,285,660 10,143,590 9,350,547 94,690,981 

W$i&. 59,767,630 0 7,036,931 0 5,410,073 13,774,210 12,005,210 10,234,380 108,228,434 

1WJ 66,214,230 0 7,036,931 0 5,410,073 14,805,670 13,295,170 10,846,800 117,608,874 

11984 75,807,080 0 7,036,931 0 5,410,073 16,340,520 15,214,700 11,758,120 131,567,424 

Bill 85,220,570 0 7,036,931 0 5,410,073 17,846,680 17,098,340 12,652,400 145,264,994 

1986 80,431,700 0 7,036,931 0 5,410,073 17,080,460 16,140,090 12,197,460 138,296,714 

|l«>87 77,226,640 0 7,036,931 0 5,410,073 16,567,650 15,498,760 11,892,980 133,633,034 

fSPtll 69,745,550 0 7,036,931 0 5,410,073 15,370,680 14,001,790 11,182,280122,747,304 
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